Composition Series of Tensor Product

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Tensor Product of Graphs

Let $G$ and $H$ be graphs. The tensor product $Gotimes H$ of $G$ and $H$ has vertex set $V(Gotimes H)=V(G)times V(H)$ and edge set $E(Gotimes H)={(a,b)(c,d)| acin E(G):: and:: bdin E(H)}$. In this paper, some results on this product are obtained by which it is possible to compute the Wiener and Hyper Wiener indices of $K_n otimes G$.

متن کامل

Arens-irregularity of tensor product of Banach algebras

We introduce Banach algebras arising from tensor norms. By these Banach algebras we make Arensregular Banach algebras such that tensor product becomes irregular, where is tensor norm. Weillustrate injective tensor product, does not preserve bounded approximate identity and it is notalgebra norm.

متن کامل

Distance-based topological indices of tensor product of graphs

Let G and H be connected graphs. The tensor product G + H is a graph with vertex set V(G+H) = V (G) X V(H) and edge set E(G + H) ={(a , b)(x , y)| ax ∈ E(G) & by ∈ E(H)}. The graph H is called the strongly triangular if for every vertex u and v there exists a vertex w adjacent to both of them. In this article the tensor product of G + H under some distancebased topological indices are investiga...

متن کامل

Composition-Diamond Lemma for Tensor Product of Free Algebras

In this paper, we establish Composition-Diamond lemma for tensor product k〈X〉⊗k〈Y 〉 of two free algebras over a field. As an application, we construct a GröbnerShirshov basis in k〈X〉 ⊗ k〈Y 〉 by lifting a Gröbner-Shirshov basis in k[X]⊗ k〈Y 〉, where k[X] is a commutative algebra.

متن کامل

On The Tensor Product of Two Composition Algebras

Let C1 ⊗F C2 be the tensor product of two composition algebras over a field F with char(F ) 6= 2. R. Brauer [7] and A. A. Albert [1], [2], [3] seemed to be the first mathematicians who investigated the tensor product of two quaternion algebras. Later their results were generalized to this more general situation by B. N. Allison [4], [5], [6] and to biquaternion algebras over rings by Knus [12]....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pure and Applied Mathematics Quarterly

سال: 2012

ISSN: 1558-8599,1558-8602

DOI: 10.4310/pamq.2012.v8.n4.a7